Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wolfgang Kliegel,^a Ulf Riebe,^a Brian O. Patrick,^b Steven J. Rettig^b and James Trotter^b*

^aInstitut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany, and ^bDepartment of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

Correspondence e-mail: brian@xray5.chem.ubc.ca

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.043 wR factor = 0.046 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, N-(2,2,2-trichloro-1-hydroxyethoxy)piperidine, $C_7H_{12}Cl_3NO_2$, contains a six-membered piperidine ring with a chair conformation. The triclinic unit cell contains two independent pairs of molecules, with the molecules in each pair linked about centres of symmetry by $O-H\cdots N$ hydrogen bonds.

Chloral adduct of N-hydroxypiperidine

Received 30 October 2001 Accepted 6 November 2001 Online 17 November 2001

Comment

The title compound, (I), was synthesized according to a method described in the literature (Zinner *et al.*, 1965). On the basis of the results of boron chelate formation (Kliegel, 1969; Rettig *et al.*, 1974), the molecular structure reported for the adducts of carbonyl compounds and *N*-hydroxydialkylamines has generally to be questioned (Kliegel *et al.*, 1995). The present X-ray crystallographic analysis of (I) confirms that the α -hydroxyalkylation of *N*-hydroxypiperidine with chloral (trichloroacetaldehyde) leads to an *O*-alkyl derivative (*O*-semiacetal) and not to the isomeric *N*-oxide (II).

The crystal structure of (I) contains two independent molecules, which have virtually identical conformations and dimensions. The molecule contains a six-membered piperidine ring system, with a chair conformation (ring torsion angles in the range 53.4 to 63.0°). The substituent on the N atom is in an equatorial site, with the lone-pair electrons axial. Bond lengths and angles are all normal. The two independent molecules are linked into separate pairs about centres of symmetry (at 0, 1/2, 0 and 0, 0, 1/2) by $O-H \cdots N$ hydrogen bonds: $O \cdots N =$ 2.892 (5), 2.815 (5) Å; $H \cdot \cdot \cdot N = 2.10$ (4), 2.04 (5) Å; $O - H \cdot \cdot \cdot N$ = 161 (4), 164 (5)°. There are some strong intermolecular interactions involving the Cl atoms, with Cl. · · Cl [3.390 (2) and 3.451 (2) Å] and Cl···O [2.952 (3) Å] distances slightly shorter than normal van der Waals contacts (3.60 and 3.20 Å, respectively); there are also some possible intermolecular C- $H \cdot \cdot \cdot Cl$ interactions: $C \cdot \cdot \cdot Cl = 3.67 - 3.75$, $H \cdot \cdot \cdot Cl = 2.72 - 2.84$ Å and $C - H \cdot \cdot \cdot Cl = 164 - 175^{\circ}$.

Printed in Great Britain - all rights reserved

© 2001 International Union of Crystallography

Views of the two independent molecules (33% probability ellipsoids).

Experimental

Compound (I) was prepared according to the literature method of Zinner et al. (1965); colourless crystals, m.p. 356-57 K (literature 358 K). IR (KBr): 3096 cm^{-1} (broad O-H); ¹H NMR (90 MHz, CDCl₃/TMS), δ (p.p.m.): 1.0–2.0 [m, C(CH₂)₃C], 2.4–3.6 [m, N(CH₂)₂], 5.30 (d, 6 Hz, O-CH-O), 7.00 (s, broad, exchangeable, OH). Crystals suitable for X-ray analysis were obtained by slow (48 h) crystallization from chloroform and cyclohexane using a liquid-diffusion method (Jones, 1981).

Crystal data

$C_7H_{12}Cl_3NO_2$	Z = 4
$M_r = 248.54$	$D_x = 1.509 \text{ Mg m}^{-3}$
Triclinic, P1	Cu Ka radiation
a = 10.409(1) Å	Cell parameters from 25
b = 11.922 (2) Å	reflections
c = 10.291 (1) Å	$\theta = 39.6 - 45.4^{\circ}$
$\alpha = 109.78 \ (1)^{\circ}$	$\mu = 7.37 \text{ mm}^{-1}$
$\beta = 94.96 \ (1)^{\circ}$	T = 294 K
$\gamma = 110.61 \ (1)^{\circ}$	Block, colourless
$V = 1093.8 (3) \text{ Å}^3$	$0.40 \times 0.35 \times 0.30 \text{ mm}$

Data collection

Rigaku AFC-6S diffractometer $\omega - 2\theta$ scans Absorption correction: ψ scan (Molecular Structure Corporation, 1992) $T_{\min} = 0.076, \ T_{\max} = 0.110$ 4696 measured reflections 4443 independent reflections 2810 reflections with $I > 3\sigma(I)$

Refinement

Refinement on F R = 0.043wR = 0.046S = 1.952810 reflections 244 parameters H atoms treated by a mixture of independent and constrained refinement

Z = 4			
$D_x = 1.509 \text{ Mg m}^{-3}$			
Cu Ka radiation			
Cell parameters from 25			
reflections			
$\theta = 39.6 - 45.4^{\circ}$			
$\mu = 7.37 \text{ mm}^{-1}$			
T = 294 K			
Block, colourless			
$0.40 \times 0.35 \times 0.30 \text{ mm}$			

$R_{\rm int} = 0.044$
$\theta_{\rm max} = 77.5^{\circ}$
$h = 0 \rightarrow 13$
$k = -14 \rightarrow 14$
$l = -12 \rightarrow 11$
3 standard reflections
every 200 reflections
intensity decay: none

 $w = 1/\sigma^2(F_o)$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.24 \text{ e Å}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ Extinction correction: Zachariasen (1968)Extinction coefficient: $7.2(4) \times 10^{-6}$

Cl1-C7	1.773 (3)	N1-C5	1.472 (4)
Cl2-C7	1.747 (4)	N2-C8	1.467 (4)
Cl3-C7	1.765 (3)	N2-C12	1.459 (4)
Cl4-C14	1.758 (4)	C1-C2	1.518 (6)
Cl5-C14	1.760 (3)	C2-C3	1.508 (5)
Cl6-C14	1.767 (4)	C3-C4	1.518 (6)
O1-N1	1.470 (3)	C4-C5	1.502 (6)
O1-C6	1.397 (4)	C6-C7	1.549 (6)
O2-C6	1.376 (4)	C8-C9	1.532 (6)
O3-N2	1.459 (4)	C9-C10	1.514 (6)
O3-C13	1.402 (6)	C10-C11	1.500 (7)
O4-C13	1.374 (4)	C11-C12	1.510 (6)
N1-C1	1.478 (4)	C13-C14	1.540 (6)
N1-O1-C6	110.5 (3)	Cl1-C7-C6	108.3 (3)
N2-O3-C13	110.4 (3)	Cl2-C7-Cl3	110.2 (2)
O1-N1-C1	103.2 (3)	Cl2-C7-C6	112.5 (3)
O1-N1-C5	104.9 (3)	Cl3-C7-C6	109.8 (2)
C1-N1-C5	109.9 (3)	N2-C8-C9	110.0 (4)
O3-N2-C8	103.1 (3)	C8-C9-C10	111.0 (4)
O3-N2-C12	105.4 (3)	C9-C10-C11	109.7 (4)
C8-N2-C12	110.4 (3)	C10-C11-C12	110.6 (4)
N1-C1-C2	110.2 (3)	N2-C12-C11	109.1 (3)
C1-C2-C3	111.9 (4)	O3-C13-O4	110.6 (3)
C2-C3-C4	109.0 (4)	O3-C13-C14	104.0 (3)
C3-C4-C5	111.1 (3)	O4-C13-C14	110.3 (2)
N1-C5-C4	110.3 (3)	Cl4-C14-Cl5	108.6 (2)
O1-C6-O2	110.3 (3)	Cl4-C14-Cl6	109.2 (3)
O1-C6-C7	103.7 (3)	Cl4-C14-C13	111.9 (3)
O2-C6-C7	110.6 (3)	Cl5-C14-Cl6	108.2 (3)
Cl1-C7-Cl2	108.8 (2)	Cl5-C14-C13	108.9 (3)
Cl1-C7-Cl3	107.1 (3)	Cl6-C14-C13	110.0 (2)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

We thank the Natural Sciences and Engineering Research Council of Canada and the Fonds der Chemische Industrie, Frankfurt am Main, for financial support.

References

Table 1

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Jones, P. G. (1981). Chem. Br. 17, 222-224.
- Kliegel, W. (1969). Z. Chem. 9, 112-113.
- Kliegel, W., Riebe, U., Rettig, S. J. & Trotter, J. (1995). Can. J. Chem. 73, 835-845.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software and TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Rettig, S. J., Trotter, J. & Kliegel, W. (1974). Can. J. Chem. 52, 2531-2541.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.
- Zinner, G., Ritter, W. & Kliegel, W. (1965). Pharmazie, 20, 291-296.